areaDetector EPICSv4 modules

Bruno Martins

areaDetector EPICSv4 modules

Bruno Martins

Goal

Process the huge amount of data generated by recent detectors in **real time**

Motivation

- Eiger 1M: 1030x1065 @ 3 kHz
- Eiger 4M: 2070x2167 @ 750 Hz
- Eiger 9M: 3110x3269 @ 238 Hz
- Eiger 16M: 4150x4371 @ 133 Hz

- All of them saturate a 10Gbps link:
 - That's a lot of data!

areaDetector v4 modules

- Comprised of:
 - A plugin, NDPluginPva: v4 server
 - A driver, pvaDriver: v4 client
- Developed in-house independently of other solutions
- Merged into areaDetector's ADCore on branch v4-plugin
 - http://github.com/areaDetector/ADCore

Plugin: NDPluginPva

- In processCallbacks:
 - Receives an NDArray;
 - Zero-copies it into an NTNDArray (creates a shared_vector with underlying data pointing to NDArray's pData);
 - Publishes the NTNDArray as a PV using a pvDatabase instance;

Driver: pvaDriver

- In monitorEvent:
 - Receives an NTNDArray;
 - Copies it into an NDArray;
 - Publishes the NDArray to driver's listeners: doCallbacksGenericPointer();

No Zero Copy yet – see next slide.

Zero Copy

- NDArray → NTNDArray works fine
 - Underlying shared_vector is smart: can be told to release() the original NDArray in its destructor;
- NTNDArray → NDArray not so much
 - NDArray can be allocated pointing to NTNDArray's shared_vector's data, but smart pointer has to be kept for the lifetime of the NDArray. However:
 - No current way to make NDArray's release() dispose of the smart pointer;
 - Driver can keep the smart pointer, but for how long? How to know NDArray that was passed to the plugins is no longer being used?

Test 1: Functionality

- Question: Do they work?
- Both IOC's on the same computer

П

Test 2: Performance

- Question: can they handle more than 10 Gbps?
- Both IOC's on the same computer
- simDetector:
 - 5000x5000 @ 60 Hz: little over 11 Gbps
 - ImageMode: Multiple, NumImages: 10000
- Both plugins with non-blocking callbacks.
- Results are the avearage of 10 runs.

Test 2: Performance – produced frames

	Frames Lost	Frames Through	Frames Through
	(Avg)	(Avg)	(Avg %)
simDetector	0	10000	100
NDPluginPva	0	10000	100
pvaDriver	171.3	9828.7	98.287
NDPluginStdArra	173.3	9826.7	98.267

Test 2: Performance – produced frames

- NDPluginPva never lost frames.
 - Zero Copy makes it really fast.
- It's worth noting that even without zero copy pvaDriver lost only 2% of the frames.

Test 2: Performance - CPU usage / thread

CPU Usage

simDetectorIOC - driver	~64%
simDetectorIOC - plugin	~51%
pvaDriverIOC - driver	~87%
pvaDriverIOC - plugin	~96%

Test 2: Performance - Computer Specs

- Intel Xeon E5-2643, 24 cores @ 3.40 GHz
- 256GB RAM
- Debian Wheezy 7.8 64-bit

Test 3: Transfer between computers

- Question: can they saturate a real 10Gbps link?
- IOC's on different computers
- simDetector:
 - 5000x5000 @ 50 Hz: ~10 Gbps
 - ImageMode: Multiple, NumImages: 10000
- Both plugins with non-blocking callbacks.
- Results are the avearage of 5 runs.

Test 3: Transfer – produced frames

Frames Lost (Avg)	Frames Through (Avg)	Frames Through (Avg %)
0	10000	100
0	10000	100
773.6	9226.4	92.264
773.6	9226.4	92.264
	(Avg) 0 0 773.6	(Avg) (Avg) 0 10000 0 10000 773.6 9226.4

Test 3: Transfer - CPU usage / thread

CPU Usage

simDetectorIOC - driver	~56%
-------------------------	------

simDetectorIOC - plugin ~53%

pvaDriverIOC - driver ~66%

pvaDriverIOC - plugin ~56%

Test 3: Transfer - bandwidth

NDPvaPlugin + pvaDriver: 9.3 Gbps

Baseline (iperf network tool): 9.9 Gbps

Test 3: Transfer - Computer Specs

- simDetectorIOC:
 - Intel Xeon E5-2643, 24 cores @ 3.40 GHz
 - 256GB RAM
 - Debian Wheezy 7.8 64-bit
- pvaDriverIOC
 - Intel i7-4770, 8 cores @ 3.40 Ghz
 - 16GB RAM
 - Linux Mint 17.1 64-bit

Conclusion

- Plugin and server are ready to be used
 - Available on areaDetector's v4-plugin branch
- They have a high throughput
- They don't saturate the CPU
 - Although the CPU tested was powerful.

Future improvements

- Zero-copy on pvaDriver
 - Might depend on NDArray changes
- Better mechanism to detect frame losses by pvaDriver
 - 1 overrun might consist of more than 1 frame lost
- NDPluginPva/pvaDriver lossless mode:
 - Client tells the server to slow down if needed
 - How to handle multiple clients, then?
 - Depends on support from v4 protocol

Thank you!

